General Multiobjective Force Field Optimization Framework, with Application to Reactive Force Fields for Silicon Carbide.
نویسندگان
چکیده
First-principles-based force fields prepared from large quantum mechanical data sets are now the norm in predictive molecular dynamics simulations for complex chemical processes, as opposed to force fields fitted solely from phenomenological data. In principle, the former allow improved accuracy and transferability over a wider range of molecular compositions, interactions, and environmental conditions unexplored by experiments. That is, assuming they have been optimally prepared from a diverse training set. The trade-off has been force field engines that are functionally complex, with a large number of nonbonded and bonded analytical forms that give rise to rather large parameter search spaces. To address this problem, we have developed GARFfield (genetic algorithm-based reactive force field optimizer method), a hybrid multiobjective Pareto-optimal parameter development scheme based on genetic algorithms, hill-climbing routines and conjugate-gradient minimization. To demonstrate the capabilities of GARFfield we use it to develop two very different force fields: (1) the ReaxFF reactive force field for modeling the adiabatic reactive dynamics of silicon carbide growth from an methyltrichlorosilane precursor and (2) the SiC electron force field with effective core pseudopotentials for modeling nonadiabatic dynamic phenomena with highly excited electronic states. The flexible and open architecture of GARFfield enables efficient and fast parallel optimization of parameters from quantum mechanical data sets for demanding applications like ReaxFF, electronic fast forward (or electron force field), and others including atomistic reactive charge-optimized many-body interatomic potentials, Morse, and coarse-grain force fields.
منابع مشابه
Modelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool
Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...
متن کاملReaxFF Reactive Molecular Dynamics Study of Orientation Dependence of Initial Silicon Carbide Oxidation.
We analyze the early stage of the highly anisotropic silicon carbide oxidation behavior with reactive force field molecular dynamics simulations. The oxidation of a-, C,- m-, and Si-crystallographic faces is studied at typical industry-focused temperatures in the range from 900 to 1200 °C based on the time evolution of the oxidation mechanism. The oxide thicknesses and the growth rates are obta...
متن کاملMultimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.
We have developed a first-principles-based hierarchical simulation framework, which seamlessly integrates (1) a quantum mechanical description based on the density functional theory (DFT), (2) multilevel molecular dynamics (MD) simulations based on a reactive force field (ReaxFF) that describes chemical reactions and polarization, a nonreactive force field that employs dynamic atomic charges, a...
متن کاملSurface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...
متن کاملToward a Process-Based Molecular Model of SiC Membranes. 1. Development of a Reactive Force Field
A broad class of important materials, such as carbon molecular sieves, silicon carbide (SiC), and silicon nitride, are fabricated by temperature-controlled pyrolysis of preceramic polymers. In particular, the fabrication of SiC membranes by pyrolysis of a polymer precursor that contains Si is quite attractive for separation of hydrogen from other gases. It has been quite difficult to extract at...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2014